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DISPLACEMENT EFFECT OF A THREE-DIMENSIONAL BOUNDARY LAYER ‘

By hANKLU? ~. MOOEE

SUMMARY

A method is d.scribed for determining ihe “dtiplacawnt

SUrjaC.C’) oj a known threedimewion.a 1 compre&M.e 130undary-

lizyer @w in terrm of the mm+w defects a880ciat4d with the

projil.tx of the two velocity component.a parallel to the 8-urjace.

l’lu result i-s a generalization of the plane j?mo concept of dti-

placement thickne8s introduced in order to o?acribe how a thin

bounda~ layer distorts the outer nonmkcoua @w.

% tight oj the diq.?uament @ace above the body SW&UX

jor$ow abowt a yawed injinite cylinder ia 8hown to be equal to

the height characterizing t.lw mm8-- deject of t.lw chordtie

velocity projile. The dtiplucemm&suxjace he@ht is 8hown to

differ, in general, jrom that a880cia&d with the redtant 7nu$8-

@w deject, even at 8tugnation points of the 8econdaw jlo-w.

Numerical valw+x are found for the knm threedinwwimml
boundarylayer @o about a cone at a smali? angle oj atiack to

a super80nti stream.

INTRODUCTION

The boundary layer established in the flow .of a slightly
viscous fluid about n body is normally considered an isolated
region wherein the effects of viscosi@ predominate and
outsjdo of which the motion of the fluid is governed by the
laws of nonviscous motion. I?or large Reynolds numbem,
the boundary layer is assumed to be so thin that the non-
viscous portion of the flow occurs as though there were no
boundary layer. This assumption is strictly correct in the
limit of infinite Reynolds number. For large but finite
Reynolds numbers, the growth of the boundary layer causea
the stream to be deflected away horn the body surface.

This displacement effect of the boundary layer on the
nonviscous flow may properly be determined bm the behav-
ior of the boundary layer itself, w established either by
experiment or by solution of the Prandtl boundary-layer

I equations for kninar flow.
It does not follow, however, that this revised outer flow

may properly be used in conjunction with the Prandtl
equations to yield an improvement in the boundary-layer
calculation. Such an improvement may be obtained only
by use of a new set of equations that take into account the
variation of pressureacross the boundaxy layer. This varia-
tion is neglected in the l?randtl equations. (See Alden’s
iterative solution for incompressible flat-plate flow, ref. 1.)
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The customary definition of displacement thickness (ref. 2)
is applicable to two-dimensional flow and is expressed in the
following equation:

J b@L dy=plu(h-&) (1)
o

where h is some location well outside the boundary layer
(fig. 1) at which pu=p,w and beyond which the flow maybe
considered nonviscous. (A list of symbols is provided in the
appendix.) Under the assumption of m extremely thin
boundary layer, his so small that MWmaybe taken as the
evaluation at the body surface (y= O) of the nonviscous flow
obtained by neglecting the presence of the boundary layei.
Equation (1) equates the actuaJ mass flow near the surface
with the mass flow which -would be associated with a non-
viscous flow that terminate at 6* rather than e.ktending to
the wall. . Thus, the nonviscous portion of the flow behaves
as if it occurred in the presence of a solid boundary given
by the displacement thickness 6*(z). Equation (1) maybe
solved for 6*:

‘*=Jb(’-%)dy
Ordinmily, theoretical boundary-layer solutions for pu/piul

asymptotically approach 1 for large values of Reynolds
number based on y. Therefore, displacement thickness is
often defined as follows:

‘*=JJ”(’-%l)dy
Tn”’(’)

h

y=s’(x)

,-- Bodysurface

X4 -
FIGURE 1.—Plane boundary-layerflow.

by~,” by Fran?dlaK. Nw% K&2.
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Surface yQhLr,z)--

FIGURE 2.—T kuee-&nensionalbounda@ayer flow (Cartesian
coordinates). ‘

For three-dimensional boundary-layer flows, two length
characterizing mass-flow defects may be deiined in terms of
the proties ~f the two veloci~ components tangential to the
surface (fig. 2), .

Ylx’-%)dy’ : (,,

/Yllb(’-%l)d’ “

and it is not clear which, if either, defines a “displacement
surface” that properly describw the extent to which the non-
viscous flow is deflected by the boundary layer.

Of coume, it is expected that there does exist a displace-
ment surface for such flows. The amdysis that follows
shows that such ‘a surface may be described by a defining
equation more fundamental than equation (1).

The velocity and density profiles are assumed to be known
for the three-dimensional flows under consideration. Cases
for which this is true include: the laminar boundary layer
on yawed infinite cylinders, trmted by I?randtl (ref. 3),
R. T. Jones (ref. 4), and Seam (ref. 5); and the laminar
boundary layer on a cone at a small angle of attack to a
supersonic stream (ref. 6). The displacement effect of these
flows will be treated speciikdly.

The investigation was conducted at the NACA Lewis
laboratory in February 1952.

THEORY

DEP’INING RELATION FOR DISPL4CEMBNT SORPACE

The botidary-layer solution (assumed known) yields a
certain distribution of velocity vb@+ normal to the body
&n&ce at the outer edge Ii(z,z) of the boundary layer, where
p,u, and w may be taken essentially equal to pl,ul, and WI
(see fig. 2). Under the assumption that the nonviscous flow
is altered only slightly by displacement, the most direct
way to compute this efFect would be to suppose that the
nonviscous equations hold for y >h (z,z) and to impose the
following boundary condition on the”normal velocity Oofin.
the outer flow:. 1

o.~obl (~j z) at Y=h (~, z) (3)

Eokeyer, since the boundary conditions usually encountered
in nonviscous flow specify an impermenblo surface, it is
convenient to recast the boundary condition given in equa-
tion (3) in answer to the question: What impermeable
surface y= A(z,z) would deflect a nonviscous fluid in such u
way as to produce a normal velocity satisfying condition (3)?
This fictitious surface may be called the displacement surface.

Because A(z, z) is imagined to be a stream surface, it is
necessary to specify that at y=A the resultant velocity
vector (u, u, w) be tangent to the surface y=A. Thus, at
y=A the ratio of u to the magnitude of g, which is defined ,as
the vector (u, w), must be set equal to the slope of the surfoce
y=A, measured in the direction of the vector ~, or, equiva-
lently, equal to the component in the direction of ~ of the
vector grad A. In vector notation, therefore, the normal

“velocity u which would be produced k- a nonviscous fluid at
an impermeable surface y=A is ~ . grad A. The vector ~
may be obtained by evaluating the velocity vector of the
unrevised nonviscous flow at the body surface (v= O), undw
the related assumptions that the velocity vector varies only
slightly over distancea of the order of the actual boundary-
layer.thickness and that the revision required to take account
of displacement is slight. Thus, at y=A (see fig. 3),

The increment in Ow between A and. h is appro.sinmtely
(h-A)boti/@; again, a thin boundary layer is assumed and
only the tit term in a Taylor’s series is used.

To the order of approximation contemplated in this
analysis, bVO@y.may be obtained from the unrevised non-
viscous flow evaluated at y= O. Tlms, the fictitious im-
p&meable surface A would produce, at y=h, a normal
velocity (seellg. 3)

Introducing this result into the boundary condition given in
equation (3) yields the deiining relation for A(x, z)

(4)

The boundary-layer solution yields ~bl.

EXPRESSION OF A IN TERMS OF MASS-PLOW DEFECTS

The displacement surfqce A may be related to tho mrm-
flow defects (eqs. .(2)), which characterize the boundary
layer, as follows: In a Carte9ian coordinate system (fig, 2),
the equation of continui~ for both ,the boundary-layer and
nonviscous flow is

(5)

Under the Prandti boundary-layer assumptions, the Cartesian
equations of motion, and hence equation (5), maybe ~ppliod
in an orthogonril curvilinear coordinate system in which the
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surfaco of the body is given by y= O,provided the radius of
curvature of the body is everywhere kirge as compared with
the boundary-layer thickness. Integrating equation (5)
across the boundary layer yields

--J’(%’+%)d”(Pvb2),_h–

ha
‘s [, ~ (/m-pu)+%(wmm)]cw–

or, inasmuch as h ‘is outside the boundary layer where
pu=plul and PW=PIW,

where d=and & are the mass-flow defects defined in equations
(2), For the nonviscous flow, Vti=O at the body surface
(?/=0), and equation (5) becomes

4%9..0=-(*’%)
Introducing equations (6) and (7) into equation

& [PIUI (A–Q]+: [P@I (A–%)]=0

(7)

(4) yields

(8a)

In a Cartesian coordinate system, the displacement surface
is related to the mass-flow defects by equation (8a). When
cases arise for which other coordinate systems must be used,
the following generalization in vector form of equation (8a)
may be used:

‘iv[’’’QIJhJh(PlgrPg)dY]=o (8b)

where y ia the distance normal to the body surface”and where
the divergence operator involves diilerentiation only with
respect to the two coordinates parallel to the body s~face.

EXAMPLES

Plane flow.—Equation (8a) may be integrated to. yield,
for plane flow (a/a2=o),

K
A=6=+—

plU1 (9)

where K is a constant of integration.
The appearance of this constant means, in general, that

the revised boundary condition on the nonviscous flow near
the wall may be ~pplied at any surface in the boundary-layer
region; for example, along the wall itself. Of course, if
there is a stagnation point on the body Where UI vanishes,
then Kmust be taken equal to zero and the revised boundary

condition must be imposed at the location A= 6., at least
near the stagnation point.

Yof Egl . gradA + (h-A)(#l..1 _

l— —

Surface
y=h(x,z)--,

‘. ..::,W<:::::.,.

Surface
Y=ALr,z)-

/
‘,
‘-Body surface

FIGURE 3.—Displacement surface in three—dh enmonal flow (Cartwian
coomlinatee).

Stagnation point of seconduy flow,-lh the vertical plane
of symmetry of the flow about a body of revolution at an
angle of attack, the circumferential velocity component
vanishes.in the boundary layer as well as in the nonviscous
outar region. Such stagnation of the secondary motion
would occur in a variety of cases, in particukx, wherevar an
wwntially three-dimensional flow has a plane of symmetry.
When wi is designated as the component of secondary flow
(circumferential velocity for a body of revolution) at the
outer edge of the boundary layer, and equation (8a) is
written in the form

[ la[l “ o (lo)& PIuI(A—6J +WI& PI(A—-+z) +PI(A—&) ~=

it is clear that A cannot equal 6=,in general, even if both W1
and the boundary-layer profile of w vanish, unless bw@z
also vanishe5.

Flow about yawed infinite oylinder.-lh the flow about a
yawed Mnite cylinder, there is a spanwise boundary-layer
velocity profile and an a,mociabd sp~wise mass-flow defect.
(See refi. 3 to 5.) If z is taken in ,the chordwiee direction
(fig. 4), the entire flow depends only on z. Thus, derivatives
with respect to the spanwise coordinate z vanish; and, hence,
from equation (8a), the plane-flow result (eq. (9)) applies.
Accordingly, the spanwise mass-flow defect represented by
& does not inter into the determination of the displacement
surface.
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FIGUBE 4.—Coordinate system for yawed fite oylinder.
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FIQURE 5.—Cuordinate system

Supersonic flow about cone
When the coord.inati system
equation (8b) becomes

\
for cone at angle of attack.

at small angle of attaok.—
shown in figure 5 is used,

[ 1[ 1sin O+ PIUIZ (A—U +% Pfuh (A—&) =0 (11)

Because the outer flow is COtiC4 PI, UI, ~d WI W13 f~ctio~
only of p; and equation (11) DIZLYbe ~t~

PIU1 ski e~[Z(A-aJ]+;[PIWI(A-ap)]=O (13)

In the case of conical outer flow, the associated boundary-
layer proiiles shows imilarity of the Blasius type in meridional
planes (see ref. 7 or 8). Thus, in a meridional plane, A, &

and 3 are proportional to & I&orporation of this infor-
mation into equation (13) give9

: PM sin O(H)+%
[ 1PIW1(A—8P) =0 (14)

For a cone at small angle of attack ~ u, is nearly equal to
Z, the velocity on the cone surface at zero angle of attack.
The quantities pl, A, 6., and L vw O~Y slif$tlY with de
of attack, whereas

Wl=& sin p (15)

where JL depends only on the cone vertex angle and the flow
Mach number and is defined in reference 6 as follows:

,

The quantities Z, Z, md Z m in the not~tion of ref~ence 9J
wherein they are tabulated.

To the ilrst order in i, the substitution of equation (16)
into equation (14) yields the result

; -& A2(ti,-tiJ Cos (0A=6z+– (16;
.

The analysis of reference 6 yields the valuea of & and 6P,
Clearly; A diflere from ~. in the plane of symmetry p= 0, r,

where the circumferential velocity w vanishes. It might,
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FI?UEE 6.—Proportionfd rate of incres+e of displacement thiokness
with angle of attack on cone.
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however, be noted that in the plane p=~, ~, A=&. F~e

6 shows the proportional rate of increase of displacement
thiclmess A with angle of attack in the plane of symmetry
q=r at zero angle of attack. The corresponding rate of
increase of the mass-flow defect 6=is shown for comparison.
These curves are obtained horn equation (16) and the
results of reference 6. The sine of the semivertex angle is
introduced m a factor primarily to permit presentation of
the case 0=0 as the limit of an indeterminate form. l?or a
stream Mach number of 2, the change in displacement thick-
ness appears to be of the order of 50 percent larger than the
change in the meridional mass-flow defect.

CONCLUDING REMARKS

The foregoing analysis deals only with the displacement
effect of a Iuiown boundary layer on the nonviscous outer
flow, and hence can be applied only if the boundary-layer .
behavior has been determined either theoretically or experi-
mentally. The latter approach might possibly find appli-
cation in the correction of nozzle contxmrsfor boundary-layer
development. In this connection, perhaps, it should be
noted that the analysis is not restricted to laminar flows.

Lmvrs FLIGHTPROPULSIONLABO~TORY
NATIONALADVISOEYCoanrmmm FOR AERONAUTICS

CLIWIWND, OHIO, ikta~Ch6, 1962

APPENDIX-SYMBOLS

The following symbols are used in this report:
A2 function of cone angle and Mach number

(eq. (15))
lb height above body surface at which p, u,

w= PI, UI, wI, and beyond which nonviscous
equations apply (eq. (3))

Al. abeam Mach number
fl velocity vector composed of components paral-

lel to body surface u, w
u velocity component in x4rection
E meridional velocity component at

cone at zero angle of attack
v velocity component in y-direction

surface of

Vbl boundazylayer solution for velocity n,ormal to
surface, evaluated at outer edge of boundary
layer

Vof nonviscous solution for velocity normal to
surface, evaluated near the surface

w velocity component in z-direction

I

x
z}

coordinates in body surface

II coordinate normal to surface
a angle of attack
A ,height above body of displacement surface -
6* displacement thiclmemin plane flow
8= length characterizing maw-flow defect of

u-profile (eqs. (2) and 02))
8. leng& cha&&&ing rna&flow defect of

w-prefle (eq. (12)) .
6P length characterizing ma.wflow defect of

w-profile (eq. (12))
8 semivertex angle of cone
P densi~
P angular coordinate (@g. 5)

Subscript 1 denotes evaluation of nonviscous flow at body
surface, taken equivalent to conditions at outer edge of
boundary layer of infinitesimal thickness:
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